HellermannTyton

a HellermannTyton brand

HellermannTyton Connectivity

FTTH Connectivity and Blown Fibre Solutions

A specialist manufacturer of structured cabling systems and broadband fibre optic infrastructure solutions.

Builds Slowly Shifting Towards A Rural Focus

Enabling our rural communities

- Although many urban areas are still being actively built and in many cases over-built, more and more of the larger CPs are now selecting, designing and planning builds in areas with a lower population density.
- This is leading towards a greater number of overhead (OH) deployments instead of underground (UG) as many rural areas are already serviced this way.
- There are of course exceptions and much of the recently introduced fibre network delivered by the likes of GigaClear is UG.
- To optimise OLT port efficiency and improve OpEx costs, operators are considering a dual or triple split approach to this type of build, placing the lowest split count closest to the subscriber with cross-connect style ODF solutions up-stream to allow for long term management and configuration.
 - This allows the more gradual illumination of active OLT ports.
- As builds become smaller and further apart operators are deploying μPOPs as well as ever-evolving disaggregated OLTs to combat fewer subscribers and longer reaches.

Distributed Splitters Reduces Fibre Requirements HellermannTyton

Fibre Unbundling

Providing more choice for the customer

- Customer choice in the rural space is just as important as it is in the urban one.
- Rural builds have been somewhat neglected (ear-marked for phase 2) as they are significantly more expensive to reach and service.
- Those providers who have risen to the challenge have an asset that they can sell *wholesale* to others to help ensure choice and healthy competition.
- Wavelength unbundling, usually as a passive DWDM solution, is also an option and one that is likely to see more interest in the future as more and more providers start to overbuild.
- Fibre unbundling may not be the long-term solution to this challenge but until common infrastructure and service unbundling is a reality in the UK, it's the next best thing for the customer.

HellermannTyton

Dark-Fibre & POP Backhaul

The case for Wavelength Division Multiplexing

- Wavelength division multiplexing isn't new in the long-haul and carrier space but it is gaining momentum for use over shorter distances where high fibre counts are challenging and costly to deploy.
- P2P DWDM and OADM solutions, especially with tuneable optics, allows highly cost effective inter-connectivity between distributed µPOPs where densely populated fibre routes don't exist or are commercially prohibitive.
- CWDM is being employed where bandwidth sharing using XGS-PON or similar isn't desirable for some SME or similar subscribers. Maximising fibre resource allocation with multi-wavelength utilisation further improves investment in fibre deployments. Offering a hybrid solution is of course the best of both worlds.

DWDM FBG Filter Spectral Performance

HellermannTyton

32 Channels (Ch.21 – Ch.52) – Wavelength from left to right

100GHz DWDM Channel Spacings

Typical 32 Channel DWDM Allocations

- ITU-T G.941.1 allows for 100GHz channel spacing.
- 50GHz, 25GHz and 12.5GHz are also covered in the standard.
 - Channel numbers double for the same bandwidth as spacing is halved.
- Numerous vendor specific and generic transceivers available that operate up to 100Gbps on these grid spacings.

Channel	Freq (GHz)	Wavelength (nm)	Channel	Freq (GHz)	Wavelength (nm)								
21	192100	1560.61	37	193700	1547.72								
22	192200	1559.79	38	193800	1546.92								
23	192300	1558.98	39	193900	1546.12								
24	192400	1558.17	40	194000	1545.32								
25	192500	1557.36	41	194100	1544.53								
26	192600	1556.55	42	194200	1543.73								
27	192700	1555.75	43	194300	1542.94								
28	192800	1554.94	44	194400	1542.14								
29	192900	1554.13	45	194500	1541.35								
30	193000	1553.33	46	194600	1540.56								
31	193100	1552.52	47	194700	1539.77								
32	193200	1551.72	48	194800	1538.98								
33	193300	1550.92	49	194900	1538.19								
34	193400	1550.12	50	195000	1537.40								
35	193500	1549.32	51	195100	1536.61								
36	193600	1548.51	52	195200	1535.82								

100 CHT Spacing

HellermannTyton

BiDi DWDM & Dynamic Routing

HellermannTyton

Using OADMs and WDM to improve µPOP availability in a disaggregated FTTH Network

Optical Densification & Parallel Transmission

HellermannTyton

- Advances in laser baud rate, encoding, coherent optics and WDM are constantly increasing the overall throughput of optical transceivers.
- Increasing the number of fibre lanes is an alternative way to achieve similar results but requires an uplift in the physical layer that can cause significant disruptions.
- 400GBase-SR4.2 uses PAM4 signalling and existing 8F MPO connectivity, 400GBase-SR8 requires new 16F MPO connectivity.
- 800GBase-SR utilises PAM4 over multiple lanes in the near term but baud rate increases will allow the number of fibre lanes to reduce in time.

	400GBASE-SR4.2	400GBASE-SR8				
Alliance	IEEE 802.3cm	IEEE 802.3cm (breakout: 802.3cd)				
Max reach	150m over OM5	100m over OM4/OM5				
Fibers	8 fibers	16 fibers (ribbon patch cord)				
Wavelength	2 wavelengths (850nm and 910nm)	1 wavelength (850nm)				
BiDi technology	Support	/				
Signal modulation format	PAM4 signaling	PAM4 signaling				
Laser	VCSEL	VCSEL				
Form factor	QSFP-DD, OSFP	QSFP-DD, OSFP				

Ethernet Alliance – Roadmap to 1.6TBase-xxx

HellermannTyton

	Backplane	Twinax Cable	15-40m(OT) Single Twisted Pair	>100m (OT) Single Twisted Pair	100m (IT) Twisted Pair (2/4 Pair)	MMF	500m PSM4	2km SMF	10km SMF	20km SMF	40km SMF	80km SMF	Electrical Interface	Pluggable Module
10BASE-	TIS		T1 S	TIL	т									
100BASE-			TI	TIL	т									
1000BASE-			TI		Т									SFP
2.5GBASE-	КХ		TI		т									SFP
5GBASE-	KR		TI		т									SFP
10GBASE-			ті		т	SR			-BR10-D/U LR	-BR20-D/U	-BR40-D/U ER			SFP
25GBASE—	<mark>Kr</mark> 1 Kr	CR1 CR/CR-S	ті		T (30m)	SR			LR EPON -BR10-D/U	EPON -BR20-D/U	ER -BR40-D/U		25GAUI	SFP
40GBASE-	KR4	CR4			T (30m)	SR4/eSR4	PSM4	FR	LR4		ER4		XLAUI XLPPI	QSFP
50GBASE-	KR2 Kr	CR2 CR				SR		FR	EPON LR -BR10-D/U	EPON -BR20-D/U	ER -BR40-D/U		LAUI-2/50GAUI-2 50GAUI-1	SFP/QSFP
100GBASE-	KR4 KR2 KR1	CR10 CR4 CR2 CR1				SR10 SR4 SR2 VR1 SR1	PSM4 DR	CWDM4 FR1	LR4 4WDM-10 LR1	4WDM-20	ER4/ 4WDM-40	ZR	CAUI-10 CPPI CAUI-4/100GAUI-4 100GAUI-2 100GAUI-1	SFP/SFP-DD QSFP/QSFP-DD OSFP
200GBASE-	KR4 KR2	CR4 CR2 CR1				SR4 VR2 SR2	DR4 DR1	FR4 FR1	LR4		ER4		200GAUI-4 200GAUI-2 200GAUI-1	QSFP/QSFP-DD SFP-DD
400GBASE—	KR4	CR4 CR2				SR16 SR8/SR4.2 VR4 SR4	DR4 DR2	FR8 FR4 400G-FR4 DR4-2	LR8 LR4-6 400G-LR4-10		ER8	ZR	400GAUI-16 400GAUI-8 400GAUI-4 400GAUI-2	QSFP/QSFP-DD OSFP
800GBASE-	ETC-KR8 KR8	ETC-CR8 CR8 CR4				VR8 SR8	DR8 DR4	DR8-2 DR4-2 FR4	TBD		TBD		800GAUI-8 800GAUI-4	
1.6TBASE-		CR8					DR8	DR8-2					1.6TAUI-16 1.6TAUI-8	QSFP/QSFP-DD OSFP/OSFP-XD

Gray Text = IEEE Standard Red Text = In Task Force Green Text = In Study Group

Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces * Note: As of publication, subject to change

QSFP

SFP-DD

All man

ea

HellermannTyton

Optical Encoding Schemes

How do we increase the bits per baud?

Small & Micro-Cell Front Haul

- G.Metro is an ITU-T recommendation (G.698.4) and auto-tuning WDM optics that all but remove the burden of manual wavelength allocations and management.
- WDM, especially BiDi can realise massive fibre savings and make *small* cell deployments viable, even on the scarcest of fibre resources.
 - CWDM short distances, low channel count.
 - DWDM longer distances and higher channel count.
- Small form factor interconnect from existing FTTH providers are probably the most prevalent, convenient and commercially viable for large scale MNOs.
- Tremendous numbers of assets and opportunities in countless towns and cities will have a significant impact on MNOs' build plans and *smart-city* realisation.

Thank you – let's stay in contact

